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Low-frequency electrostatic turbulence in Ig8vplasmas is studied in two spatial dimensions by direct
numerical simulations. In this limit the guiding center velocity in the direction perpendicular to a homogeneous
magnetic field is in a first approximation tfex BO/BS velocity. The electron Larmor radius can safely be set
to zero for most relevant conditions, but the ion dynamics are noticeably influenced by their finite Larmor
radius. In the present study we use a fluid model where these effects are included by a simple filtering
operation. The equilibrium spectra are investigated and compared with known analytical results. Particular
attention is given to the finite Larmor radius effect for the turbulent diffusion of charged particles across
magnetic field lines. The integral time scale and the micro time scale associated with the velocity correlations
for the turbulent flow are discussed with attention to their dependence on the finite Larmor radius corrections.
Finally, the numerical code is generalized to a hybrid model, which incorporates many ion species with
different Larmor radii simultaneously present in the flg81063-651X97)00601-6

PACS numbdis): 52.65-y, 52.25.Gj

I. INTRODUCTION stance, by Seyleet al. [1], and a review of its implications

. : to ionospheric turbulence is discussed by Kintner and Seyler
Low-frequency electrostatic turbulence in strongly mag—gz]

netized plasmas allows the analysis to be carried out in tw

dlme.nS|ons n t.he I'm!t where magnetic .f|eI.d lines can becharged particles are well approximated by their guiding
considered equipotential, and the magnetic field assumed hg'enters. For electrons this is valid for most physically rel-

mogeneous. Then the local plasma velocity can be approxi: : . . .
. e evant cases, but the assumption might fail for the ions due to
mated byv= — V® x B, /B2, provided characteristic frequen- P 9

. . their larger Larmor radii. A straightforward, but computa-
clies are well b'elo.w the ion gyro frequendglci. The tionally costly, remedy assumes a full gyrating particle de-
equation of continuity for electrons and ions then becomegyintion. A standard fluid model, where the finite Larmor
the Euler equation radius(FLR) effects are introduced through the gyro viscos-

1 ity, was derived by Braginsk([i3]. Recently this analysis has

= _ _ been extended by Smolyake¥ al. [4].

+BO[<D(r,t),ne',(r,t)] 0. @ A simpler fluid model includes the lowest order FLR ef-
fects by introducing an operator acting on the electric field

where[ , ] denotes Poisson brackets and the electrostatif5]. By this the averaging of the electric field along the cir-

potential ® takes the role of the stream function. Togethercular gyro orbit of an ion with gyro radiys is approximated,

with Poisson’s equation with the assumption that the characteristic length scale for

the electric field variations is much larger thanThe result-

ing ion gyro center velocity is obtained as

Equations(1) and (2) assume that the positions of the

&ne,i(rvt)
ot

e
V2<D(r,t)=— ;O[ni(r’t)_ne(rvt)]i (2)

vi= EXBy/B3. (4)

1
T 22
1+4pV

a closed, standard equation is obtaineddgr

P The effective ionEX B velocity thus differs from that of the

— (V2D)—[ (VP X b)- V]V2D =0. (3)  electrons, i.e., the ion mobility differs from the electron mo-

at bility due to FLR effects. The modé#t) has been discussed,

e.g., by Stasiewic26] in the case of large Larmor radius

The equation is written in dimensionless form and the correceffects in the magnetosphere. When polarization drifts are
length, time, and potential are found by multiplying with ignored this approximation is formally adequate, but it is
o, to= wci/wﬁi , and®,=noer/ ey, respectively. Herey is  incorrectly weighting short scale length fluctuations. Even if
a scale length characterizing the initial condition. Since therdgheir amplitude is by assumption small, this weighting is nu-
is no characteristic spatial scale length in the equations, themerically unfavorable. An alternative and numerically more
turbulence for the zero Larmor radius model is scale invari+obust model was suggested by Knetral.[7], where a fluid
ant. This model has been extensively investigated, for inmodel is formally retained, but the averaging along the ion
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orbit is carried out accurate to all orders. Also the modifica-the usual fluid equations; in that case the velocity is the

tion of ion density is included since the ion density differs average of all particle velocity vectors crossing a small ref-

from the guiding center density when FLR corrections areerence area.

included; a modification of the effective ion drift alone is  Also the ion density has to be corrected for FLR effects.

insufficient and gives an inconsistent model. The resultingescribing the dynamics of a magnetized, I@wplasma on

numerical scheme is easy to implement and is only slightlya plane perpendicular to the magnetic field, the perturbations

more time consuming than the solution @f). Analytical are assumed to be strictB-field aligned. The guiding cen-

results are available for the model which can serve as norters of electrons and ions are then assumed to be uniformly

trivial tests of the code. distributed along magnetic field lines, and the phase angles
The paper is organized as follows. In Sec. Il the modelin the gyration to be uniformly distributed in the interval

and its applicability are discussed, both for a two-fluid and g 0,27). The projection of the particle positions on the plane

multi-ion fluid model. In Sec. Il an outline of the numerical of analysis is then uniformly distributed on a circle for par-

implementation is given. Analytical expressions for the as-icles with given Larmor radius and gyro centers on a given

ymptotic state of the two-fluid model is compared to resultsmagnetic field line. The analysis is similar to that giving the

from direct numerical simulations in Sec. IV. Next, in Sec. V corrections to thé&e X B velocity [7] and the result is

the dispersion of passive test particles and the corresponding

time scales are presented for a systematic variation of the ion — ,

Larmor radius. Finally, our results are summarized in section n(x)= zk: Jo(kp)nic explik-x). (6)

VI.

From a prescribed guiding center dengitfx) we now cal-
ll. FLR CORRECTIONS TO ARBITRARY ORDER culate the corresponding charge density by filtering the Fou-
rier coefficients oh(x) with g,=Jo(kp), or alternatively, by
performing the appropriate convolution in configuration
ace.

A computationally preferable alternative () is to retain
the full expression from the averaging of the electric field
over the gyro orbit. As previously discussed, the electric fiel . . . . .
experienced by a gyrating charged particle is no longer th PhyS|ca_1IIy, the |pc!u5|on of F.LR correcthns ponS|sts of
same as the electric field evaluated at the guiding cente ne following steps; first the Poisson equation is solved to

Knorr et al.[7] derived an expression for the corrected guid-9'V€ the electric field. Then theffectiveelectric field is de-
ing center velocity, indicated by an overbar termined, corresponding to the appropriate Larmor radius for

the given particle species. The partidaiding centersare
moved in response to this effective field, with the density of
v_(x)=2 Jo(kp) v exp(ik-x), (5) the appropriate guiding centers following a continuity equa-
k tion. Then the electric field is again obtained from Poisson’s
) . equation, where the local electron and ion densities are ob-
where the vector componewf, without the overbar, is 0b-  aine for the given guiding center density by distributing the
tained from the=x B velocity evaluated at the guiding cen- yarticles along their appropriate circular orbits as already de-
ter. Jo is the Bessel function of order zero. The polarizationgyiped.
drift is ignored, imposing restrictions on the applicability of |t the injtial distribution of any of the species is uniform,
the model[7]. The relative magnitude of the polarization i || remain so also at later times due to the incompress-
drift as compared to thBx B drift is in a first approximation  jyjjity of the flow. Initial conditions where only the electron
(w) wci, where the characteristic frequen¢y) is to be  component is perturbed will therefore be unaffected by FLR
obtained along the particle trajectory. As an estimate Wesffects and the time variation of the electric field will be
have(w>~.k.vth in terms of the thermgl v_elocny and wave gimilar to the one described by e.g., Seyéeml. [1].
number, giving{w)/w¢~Kkp. The polarization drift may be | dimensionless units the governing equations, with the
ignored for smallkp in strongly magnetized plasmas. The FLR corrections incorporated, take the form
latter requirement implieso2<w; in the low-frequency

relative dielectric constané, =1+ wj/wg;. Note that the n, _
FLR-corrected flow remains incompressible, just as the EJFV'(niV):O’ )
EXB flow.
A series expansion ofy(kp), assumingkp<<1, gives an
Jo(kp)~1—%(kp)2. Retaining only the leading terms, we a—te+V~(nev):0, (8)

obtain the standarfb] correction to the guiding center ve-
locity as given by Eq(4). From the series expansion we note

that FLR corrections correspond to a reduction in magnitude v=—VdXh, 9)
of the guiding center velocity for a harmonically varying o
electric field. The governing equations remain well behaved V2d=—(n;—n,), (10

for all p, in particular also in the limitp—o since L

Jo(kp—»)=0. It should be emphasized, however, that thiswherev andn are obtained from Eq<5) and (6), respec-

limit is inconsistent with the basic physical assumptions un4ively. Again it should be stressed that and n; are the

derlying the expression for the guiding center drift. electron and ion guiding center densities, respectively. A
The effective, or corrected, guiding center velocity dis-typical simulation of the potential evolution is shown in

cussed in this paper is distinct from the velocity appearing irfFig. 1.
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time = 0.0 time = 2.0 IIl. NUMERICAL CONSIDERATIONS

The system of equation&)—(10) is solved on a square
grid with spatial dimensiong0,L)? in dimensionless compu-
tational units. In the present simulations we udéd grid-
points with N=128. The parameters and N are chosen
independently. To approximate the spatial derivatives we
employed a standard Fourier collocation schg®8], with
isotropic zero padding to avoid aliasing errors from the non-
linear products. Here all wave numbers whéke= 2k,,/3,
with k,,=27N/(2L), are zero padded. The Fourier colloca-
tion scheme enforces periodic boundary conditions. Al-
though inclusion of a large number of ion species in the
extended system will give a time consuming code, a moder-
ate number is acceptable on a parallel machine. Therefore the
equations were implemented on an IBM-SP2 with 16 nodes.
Each fluid is then assigned to a node and communicates with
the master node at every time step in order to update the
FIG. 1. The time evolution of the potential in a simulation with electrostatic potential.

one electron and one ion species, where0.5 and the spatial To integrate the system of equatiof3—(10) in time, we
dimension is[0,102 in dimensionless computational units. The USed & fourth order Runge-Kutta method for the first two

solid contours indicate a positive potential, while the dashed contime steps. Then, we applied a partially Corre_Cted third order
tours correspond to a negative potential. Adams-Bashforth methofl0]. Here, the solution of an or-
dinary differential equation in the form

time =4.0

In the derivation of the governing equatio(i®—(10), it 9C
was implicitly assumed that all the ions had the same Larmor —=F(C) (13
radius. This constraint may be relaxed by averaging the ion Jt
velocity, or equivalently the ion Larmor radius, over a Max-
wellian velocity distribution. Thus the averaged filter coeffi-
cient becomesg, = exq — (pk)%/4]. Effectively, this model as- _ At
sumes that the relative distribution of ion Larmor radii CMl=C"+ —{23F"-16F""1+5F"" 2},
remains the same in a fluid element during its propagation 12
and deformation. This assumption may be difficult to justify
for a collisipnless plasma. . . Cn+1:Cn+§{5fz‘n+1+8Fn_ Fr-y,
Alternatively, we may construct a hybrid model consist- 12
ing of many ion species, each characterized by their respec- ~ -
tive Larmor radiusp. The electrons still obey the continuity WhereF"**=F(C"*1). The variables""2, F"~*, andF"
equation (8), while each ion species follows a continuity are subsequently updated to reflect the new time step. The
equation partially corrected method replac&*! with F"**. Thus
we are left with only one evaluation of the time consuming
an spatial operator, per time step.
—24V.(n,v,)=0. (11 The time step is chosen in accordance with the Courant-
at P Friedrich-Levy condition9]. This requires the time step to
be smaller than the time a perturbation needs to propagate
In addition, the Poisson equation must be modified to includdrom one gridpoint to another. In the present simulations a
the charge contributions from each ion species, characteristic velocity i©(1) while the gridpoint spacing is
O(N™1). Hence the time step is chosen to de< 1/N.
From the simulations of the Eulerian flow, we have access
V2 = ( Ne— > n_,,) (12)  to the Eulerian velocity field at each time step. This is sub-
p sequently used to trace the position of a test particle simply
by integration of its Lagrangian velocity,

First we demonstrate the results from a simulation wherd(t) =/t V(r(7),7) d7. Numerically this is done by a second
all the ions are assumed to have the same Larmor radiusrder Runge-Kutta method,
Next, we include several ion components, with different Lar- _
mor radii, which interact through the collective electric field. rMi=r"+ At v(r",nAt),
As mentioned, consistency with the derivation of the basic
equations, where polarization drifts were ignored, requires
p to be much smaller than the scales characterizing the fluc-
tuations and the size of the system. However, in the follow-
ing we relax this condition somewhat in order to bring outln addition, we must interpolate the Eulerian velocity field at
the basic features more clearly. the actual position of the test particle. Thus we have three

is advanced in time by

1 ~
L= SAHVNAD V(T (n+ 1) AD].
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possible origins of error for tracking the particle. Results by P(Nek.r - - - NekoNiker - - - Nik m)

Ramsden and Hollowal11] indicate that the choice of in- ! max "

terpolation methodand integration method for the position

is basically unimportant compared to errors due to the finite =7 X~ uelle— pifdi— BE), (20
resolution of the two-dimensiondRD) Eulerian dynamics.

Fourier interpolation is discarded because of large computayhereZ is the partition function

tional expensesQ(MN?) where M is the number of test

particles. Hence we choose bicubic splines in order to inter- (= e i~ BE) Kmax ] e
polate the velocity. This method has proven to be both accu- :f g Hette AT lk_I dng dngdn;y diny

rate and fasf12], implying O(N?) operations for construc- 0

tion of the spline andO(M) for evaluation. In the Kmax B )
simulations we usetl = 1225 particles, which initially were = lk—[ [,U«i:“e"_ p(#iJFGKMe) .
0

distributed on[0,L)2, with uniform spacing. Test particles

crossing a boundary are reintroduced at the correspondinghe superscripts andi denote the real and imaginary parts,

position at the opposite boundary and the trajectory is CONgegnectively. The distribution if20) is characterized by the
tinued. The system size is added when calculating the net ;. arse “temperatures’i,, 4, and3 corresponding to the

particle displacement. The particle tracking thus eXp“Citlyquctuations inn,, n, and the total energy. Setting

makes use of the periodicity of the system. Z=1II,Z, and differentiating the logarithm of the partition
function Z,, with respect to these temperatures, the Fourier

IV. EQUILIBRIUM SPECTRA components of the spectral energy distribution
With the FLR corrections given by the foregoing argu- 1 5 1
ments, Knorr and Reseli[13] worked out an analytical ex- &)=—"=3, With ci=———7—7,
[13] y (&) B+c§k2 k Mel+gE/~Li 1

pression for the spectral equilibrium distribution in the case
of electrons and one ion species. We use these results as,aq the Fourier components of the electron and ion guiding
test of our program, but as they have not been investigategypier density

numerically before, the results are interesting by themselves.

In wave number space the equatidi@s—(10) are given peeust
X R K 0N -1 ki*e
by their truncated Fourier representation (Ined®y=pe | 1-=—=3],
B+cgk
K,
dnik g — Bcgu
=ik > Ny Vg, (14) nl2y= 11— KTk i
dt p+g=k P <| Ik| > M ﬂ‘f’CEkz
dn Kmax are found. Withue=1.0, £;=0.1, and8=—9x 103, these
K ik > Nep Vg (15  expectation values are used as initial conditions for the simu-
dt pta=k lations running for 4 10* time steps. The equilibrium state
given by the negative temperatures is only possible for a
vi=—i®, kXb, (16)  finite system wher&y,=2#/L is nonzerd14]. The negative
temperature state corresponds to a condensation of energy in
D, = (NN /K2, (17) the lowestk modes. However, no singularity arises in the

spectrum, for small negative values, because only discrete
herev.— e wave numbers enter the analysis. The spectrum is positive
WRETEV = giVic aNd Nik= GiMik - definite for all|k|>0, and|k|=0 does not enter the dynami-

This truncated system possesses three invariants, the €5 evolution

strophy for ee}(?h species and Fh.e total energy. These are con- In the limiting case of zero Larmor radius WheJ§= 1
served quantities even for a finite number of wave numberfh T ! ’
e spectral energy distribution is characterizeddognd an

[13] effective temperature:ﬁz,ue,ui/(,ue+,ui), independent of
K k. It is easily shown that this limit reproduces the results of
max . . .
Q= [ng il (18) Seyleret al.[1], as expected. As mentioned earlier, the basic
el e governing equations remain well behaved also in the formal
limit p— oo, which, however, is violating the assumptions in
Kax the derivation. We note here that also the equilibrium spectra
= [Mix—nNad /K. (190 are well behaved in this formal limit, givingz=0 and
ko Cx= Me- A similar result is also obtained wit]ai‘lzo. In
these cases the ion motion is completely decoupled from the
By considering a microcanonical ensemble of systems condynamics in our equations, while in the zero Larmor radius
sisting of the Fourier coefficients @i, andn;, evolving on  case the ion and electron dynamics are indistinguishable.
the intersection of the hypersurfaces defined (b§) and In Fig. 2, the time averaged, numerically obtained spectral
(19), the equilibrium is given by the Boltzmann-Gibbs dis- distribution is compared with the theoretical result for two
tribution different ion Larmor radii. For simplicity we represent the
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a) 100.000 T T

10.000F

1.000f

Velocity Component

0.100f

Spectral Energy

0.010f

Time

0.001f

E L L 3 FIG. 3. The Lagrangian velocity componenisdirection for a

1 10 . S . . .
Wave Number typical electron(solid line) and ion(dashed lingtest particle where

p=0.5.
b) 100.000 T T !
S ] £ are theonlyinvariants of the truncated systdiiv)—(17). If
10.000F X 3 the analytical results of Knorr and &eli[13] are accepted
2 ] priori, the results of Figs. (@) and Zb) serve on the other
5 1.000§ 3 hand as a test of the accuracy of the code. The only con-
w ] spicuous deviations between the analytical results and the
% 0'1002' ‘ simulations are for the smallest wave numbers in the system.
& ootof .
3 V. TURBULENT DIFFUSION
0.001F =1 The finite Larmor radius effects discussed in the forego-
E . . ing section will be particularly important for low-frequency
1 10 electrostatic turbulence in strongly magnetized plasmas.
Wave Number Here electrons and ions diffuse at different rates because of

the difference in th& X B drifts they experience in the same
turbulent electric field. In order to demonstrate the basic fea-
tures of this process we used the code discussed in the fore-
going section to analyze the consequences of the FLR cor-
rections for turbulent transport. In order to study well defined
conditions, we assume the equilibrium spectra discussed in
Sec. IV.

The most important quantity for describing the diffusion

spectra by continuous curves, even though the analysis 48 the present context is the normalized Lagrangian velocity

well as the simulations refer to discrete wave numbers. Irutocorrelation function

particular, Fig. 2a) corresponds to the potential evolution

shown in Fig. 1. The spectra are obtained as a time average R(s)= (V(t)-V(t+s))

over the entire simulation. Alternatively, the spectra can be (V4 ’

obtained at a selected time step or as an average over a ] )

reduced time interval, at the expense of an increased uncefith V(t)=v(r(t),t). For homogeneous and time stationary

tainty, giving rise to some irregularity in the spectral Shape_turbulencga,l_?(s) contains all relevant mformanon_necessary

Apart from this statistical scatter, the results in Fig. 2 arefor2 obtaining the mean-square nparticle displacement

representative for selected wave number spectra during tHé“(t)). Thus it is well known[15] that

entire calculation. The dynamics in configuration space are .

thus highly dynamic, see Fig. 1, while the power spectrum is (r3y=2(V3t J (1—s/t)R(s)ds.

essentially stationary, as expected. The stability of the spec- 0

tra was explicitly verified by demonstrating the relaxation of _ i .

a perturbed spectrum towards the theoretical distribution of Nis expression can be approximated for both small and

energy in wave number space. In this case, the equilibriun2rget,

spectra were perturbed by increasing the energy in a few

central wave numbers by an order of magnitude. Alterna- <r2)~‘

tively, we have observed the relaxation from an initial con-

dition where energy was concentrated in a ring in wave num-

ber space, but this relaxation took a noticeably longer time For large timest> 7, this corresponds to the diffusive limit,
The agreement between the numerical results and thehere the integral time scale is=[;R(s)ds. For small

theoretical prediction is good, indicating that the resultstimes,t<\, we have the convective regime, whevds the

quoted above represent the correct wave number spectral distcro time scald 16] defined as\ =+/—2/R"(0). Therela-

tributions. In particular, it can be argued tHat, Q;, and tion between the Lagrangian and the Eulerian velocity auto-

FIG. 2. Time averaged numerically calculated spect(solid
line) compared to the analytical resuttashed lingfor (a) p=0.5
and(b) p=1.0. The values op are given in computational dimen-
sionless units, where the simulated domairfiGsL02. The abrupt
drop in energy for largd is due to the zero padding scheme em-
ployed in the simulations.

21

(V12 t<)

2(V3)1t, t>1. 22
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FIG. 5. The ratior./7; is shown as a function g5 in dimen-
sionless, computational, units. The solid line shows the analytical
result, while triangles correspond to results obtained from direct
numerical simulations. The analytical results are based on the actual
spectra in the simulations. Since these are statistically fluctuating in
individual realizations, the analytical curve exhibits corresponding
irregularities.

Correlation

smaller and smoother on the average compared to the elec-
tron velocity. The FLR corrections for the ion dynamics have
the consequence that an initially close electron-ion gyro cen-
ter pair will separate faster than in the zero Larmor radius
case. Two initially close electrons will on the other hand
remain close for an extended time since they experience es-
sentially the sam& X B flow, similarly for initially close ion
Time Lag gyro centers. The problem of relative diffusipb8] will be
discussed in a different work.
A comparison between the electron and ion velocity cor-
FIG. 4. Lagrangian velocity autocorrelation functions for elec- relation functions corresponding to teameflow clearly in-
trons (solid line) and ions(dashed ling obtained from simulations dicates an increase in the integral time scaldor the ions
with oneion species in addition to the electrons. The results arefor increasingp. Results are shown in Fig. 4 fgr=0.5,
shown for three different ion Larmor radig=0.5, 1.0, and 1.5, 1.0, and 1.5 in computational dimensionless units. For
corresponding tda), (b), and (c), respectively. The figure is ob- =0 the velocity statistics for the electrons and ions are the
tained by tracking 1225 test particles fo40" time steps corre-  same and the autocorrelation functions are therefore identi-
sponding to 100 dimensionless computational time units. cal. The results are readily understood by the difference in
rms velocities for electrongjv?2)= f£(k)dk, and for ions,
(v?)=[E&(k)IZ(kp)dk. The mean-square velocity is larger
c{or the electrons than for the ions sindé(kp)sl. The in-
egral time scale can be estimated by the ratio of a length
scale which is determined b§(k) and a velocity(v?)*2,
Since ions and electrons move in the same electric field spec-
trum, the characteristic length is the same for both species,
With the flow fields being different for electrons and ions while their rms velocities are different for differentby the
[even though they are derived from the same space-timgrguments given before. By this heuristic argument we ex-
varying electric field, seés)], two different correlation func-  pect that the integral time scale increases for increasing Lar-
tions can be defined; one for electrons and one for the iomor radius. Hence the ratig,/7; is estimated as
species specified by the Larmor radjusConsequently, each

species has its own associated integral time scaleand Te /(Ui2> 23)
(ve)’

Correlation “="

correlation functions has been discussed in detail lys&le
and Trulsen[17]. However, they used a different model,
where the flow consisted of many point vortices convecte
by their mutual electrostatic field.

A. Flow with one ion component

7;; and similarly for the micro time scalek, and\; . T
As discussed in the foregoing section, the electric field

power spectrum changes with the ion Larmor radii in theln Fig. 5 we show this quantity with a full line where
initial conditions. Given the spectrum of the fluctuations, the<v§’i> is obtained from the initial equilibrium spectrum. The
electrons experience the full energy in the electric field whileratios of the actual integral time scales obtained from the
the ions experience a field which is reduced by dhékp) simulations are indicated by triangles. Considering the sim-
factor in (5). This is readily observed in Fig. 3 where tke plicity of the argument, the agreement is good. The small
component of the Lagrangian velocity is shown for one elecirregularities in the full line are caused by fluctuations in the
tron and one ion test particle. Both were released as#ime  simulation spectra.

initial position, but their velocities rapidly become uncorre-  The result(23) is expressed in terms of the integral time
lated. Also, it is evident that the ion velocity variation is scalesr,; for electrons and FLR-corrected ions. These time
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FIG. 6. The variation of the ratia,/\; is shown for increasing FIG. 7. Lagrangian velocity autocorrelation functions for a
p in dimensionless computational units. The solid line shows thesimulation containing electrons and three ion species with different

analytical result, while the triangles correspond to results obtaine&farmor radii. The solid line gorresponds to the electrons, wiile
from direct numerical simulations. (C), and (D) correspond to ions witlp=0.5, 1.0, and 1.5 respec-

tively. Times are in dimensionless computational units.
scales are determined by the integral of the entire respective

velocity correlation functions. Alternatively, a micro time | Fig. 6 this ratio is compared with the numerically obtained
scale\ is determined by the curvature of the respective coryegyits. Although there is some discrepancy between the
relation function at the origin, i.eA=y—2/R"(0). Also this  theoretical and the numerically obtained results, the overall
tlm_e scale is sensitive to FLR corrections. From F|_g. 4 Weshape of the curve is reproduced by the theory. Obviously,
notice that the curvature d®(s) ats=0 decreases with in- o rasults agree exactly for=0. The agreement of simple
creasingp, or equiva_lently thai increa_lses wiFh increas_ing estimates such a@3) and (25) with the numerical results
p- A graph of the ratid\e/); as a function op is shown in a3y seem surprising. It is, however, important that it is the
Fig. 6. The curvature of the correlation functionsatO was  ratios of characteristic quantities that are estimated and not
determined by a parabolic fit. This figure is obtained fromgyantities themselves. A common error in the coefficients of
simulations with one electron and one ion species Wpege  the relevant time scales will be canceled23) and(25). For
varied systematically. - _ . practical applications it is the ratio of time scales which is
We can give analytical estimates for the rakig/\j by  most interesting and important, since it contains the informa-

making use of the short time approximation of the Lagrang+jon of the charge separation which depends on the FLR
ian autocorrelation function. For smallwe may approxi- effects.

mate the trajectory of the fluid element by a straight line

r(t)=ry+ut with constantu, insert this approximation in

(21), and average over a Maxwellian velocity distribution B. Flow with several ion components
P(u). In addition, we use that the Fourier transform of the . . .
autocorrelation function is given by the power spectrum. An. As discussed in Sec. I, the system of equatiohs-(10)

approximation of the Lagrangian autocorrelation function, in's easn;_/ exteno_led to include t__he more realistic case where
terms of the Eulerian spectrum, is then obtained as many different ion Larmor radii are simultaneously present
’ in the flow. In this way a multifluid model is obtained where

1 S2<u2> by s the relative density of the various ion components can be
R(s)~ mE > 8(k)ex;{ — 5 (Krky | (24)  chosen according to aa priori given velocity distribution,
ko Ky e.g., a Maxwellian. This multifluid model will be character-

This approximation is based on an assumption of a froze#¢€d by different mobilities of the ion components in addition
velocity field, in which a fluid element is convected without {0 ion-electron differences already discussed. In Fig. 7 we

distortion. The approximation can be improved if the veloc-Show s an illustration the Lagrangian velocity autocorrela-
ity entering the exponent in the Lagrangian autocorrelatiorfion functions for the case where three ion components with
function is replaced by the rms velocity of the particle angdifferent ITarmor radii are smultaneo_usly present in _the same
the velocity of the flow. The argument implies that the flow flOW. Again we observe an increase in the integral time scale
field in which a test particle propagates is distorted by mo-7 for increasingp, caused by the filtering of the spectrum by
tion of surrounding vorticity centers which have a velocity of € Jo function. The results are qualitatively consistent with
the order 0f<Ue>1/2- Following, e.g., Wandel and Kofoed- those of Fig. 4, where only one ion species was present. We
Hansen[19] we then estimate the rms-difference velocity notice that the velocity correlation takes on negative values
between a test particle and these vorticity centers afor large time separations. , ,
(<vz>+<v2>)1/2 for an ion and \/5(02>1’2 for an electron. In Fig. 8 we show the root-mean-square particle displace-
Thgse esltimates are then used(ﬁaﬁ) ?n (24), see also Lan- ment(“absolute diffusion”) for a simulation identical to the

dahl and Mollo-Christensefi6]. By a Taylor expansion of °"¢ described in Fig. 7. As expected, the mean-square dis-
R(s) arounds=0, the ratio ofx./\; is then estimated as placement is proportional tbin the convective regime and
' proportional toyt in the diffusive limit, seg22). For clarity,

N <v2>+<v_2> > Sk Jg(pk)g( k)k? two lines with slopes corresponding t@nd \'t are included
)\—e= e2< 7 ' L . (25 in the figure. Equally important is the fact that ion species
i Uj

2
Ekxzkyg(k)k with different Larmor radii, but present in the same flow,




corresponds to the electrons whi), (C), and (D) correspond to
ions with increasing Larmor radiug=0.5, 1.0 and 1.5 respec-
tively.
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agreement was found, adding confidence to our code and
also to the theoretical analysis. These particular equilibrium
spectra have not been studied numerically before. We ap-
plied the code for a study of turbulent transport, demonstrat-
ing that FLR effects have nontrivial effects on the dispersion
of charged particles in magnetized plasmas. For turbulent,
inhomogeneous plasmas this difference in diffusion rates
will have significant influence on the buildup of ambipolar
dc-electric fields, and subsequently also on the bulk flow
characteristics. Even though the finite Larmor radius effects
. . ; : give small corrections to th&X B drift, these corrections
0.01 0.10 1.00 10.00  100.00 have important consequences by giving rise to charge sepa-
Time . . g
ration effects which are absent for vanishing FLR correc-
tions. The analysis in this paper was based on a continuum
) ) model in two spatial dimensions. The effects considered here
FIG. 8. Plot of the rms displacement of the test particlés, -5 however, also be included in a generalized, discrete
Hamiltonian vortex model as discussed I18]. We have also
studied this model, but the analysis falls outside the scope of
this paper.
From the multifluid simulations we obtain results which

10.00¢

1.00¢

RMS Displacement

have different'dispersio_n rates. From Fig. 8 it .is evident th?‘bualitatively agree with expectations based on two-fluid
electrons, which experience the full energy in the electricsimyations and a systematic variation@fThe Lagrangian
field, have a larger mean-square displacement than the ionge|ocity autocorrelation function experiences the same

In addition, the ion dispersion rate is seen to increase Witrﬂ)roadening ap increases in both the two-fluid and the mul-
the inverse Larmor radius, as expected. These differences i simulations. The basic features of the rms displace-
turbulent diffusion rates give rise to charge separation effect§,ant are also reproduced in the multifluid simulations.

which are absent in the zero Larmor case. When a density gradient is present, turbulEnxtB diffu-

putationally advantageous code for including finite Larmor
radius effects in a fluid model. The problem was studied
numerically by Knorret al. [7], but in a formulation where
they averaged over Larmor radii for ions having gyro centers
in a small area of configuration space. Physically, this aver:
aging, which leads to a particularly simple form of the con-
volution, assumes that all the ions in that small area follo

sion of electrons and ions will necessarily be ambipolar due
VI. CONCLUSIONS to the different diffusion rates of the various ion species
present, caused by the finite Larmor radius effects. If locally
homogeneous and isotropic conditions can be assumed, our
esults on characteristic time scales can be used to estimate
the time for buildup of these ambipolar electric fields.
We have generalized our model and numerical code to the
case where the electrons can be assumed to be in a local

In this paper we presented an implementation of a com

isothermal Boltzmann equilibrium, while a two-dimensional
\Apescription is retained for the ions. These results will be

essentially the same orbit. This can be achieved if there is Bresented in a different context.

strong collisional interaction between the ions. The simplic-
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