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Finite Larmor radius effects and velocity correlations in two-dimensional
electrostatic plasma turbulence
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Low-frequency electrostatic turbulence in low-b plasmas is studied in two spatial dimensions by direct
numerical simulations. In this limit the guiding center velocity in the direction perpendicular to a homogeneous
magnetic field is in a first approximation theE3B0 /B0

2 velocity. The electron Larmor radius can safely be set
to zero for most relevant conditions, but the ion dynamics are noticeably influenced by their finite Larmor
radius. In the present study we use a fluid model where these effects are included by a simple filtering
operation. The equilibrium spectra are investigated and compared with known analytical results. Particular
attention is given to the finite Larmor radius effect for the turbulent diffusion of charged particles across
magnetic field lines. The integral time scale and the micro time scale associated with the velocity correlations
for the turbulent flow are discussed with attention to their dependence on the finite Larmor radius corrections.
Finally, the numerical code is generalized to a hybrid model, which incorporates many ion species with
different Larmor radii simultaneously present in the flow.@S1063-651X~97!00601-6#

PACS number~s!: 52.65.2y, 52.25.Gj
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I. INTRODUCTION

Low-frequency electrostatic turbulence in strongly ma
netized plasmas allows the analysis to be carried out in
dimensions in the limit where magnetic field lines can
considered equipotential, and the magnetic field assumed
mogeneous. Then the local plasma velocity can be appr
mated byv52¹F3B0 /B0

2, provided characteristic frequen
cies are well below the ion gyro frequencyVci . The
equation of continuity for electrons and ions then becom
the Euler equation

]ne,i~r,t !

]t
1

1

B0
@F~r,t !,ne,i~r ,t !#50, ~1!

where @ , # denotes Poisson brackets and the electrost
potentialF takes the role of the stream function. Togeth
with Poisson’s equation

¹2F~r,t !52
e

«0
@ni~r,t !2ne~r,t !#, ~2!

a closed, standard equation is obtained forF,

]

]t
~¹2F!2@~¹F3b!•¹#¹2F50. ~3!

The equation is written in dimensionless form and the corr
length, time, and potential are found by multiplying wi
r 0, t05vci /vpi

2 , andF05n0er0
2/e0, respectively. Herer 0 is

a scale length characterizing the initial condition. Since th
is no characteristic spatial scale length in the equations,
turbulence for the zero Larmor radius model is scale inv
ant. This model has been extensively investigated, for
551063-651X/97/55~1!/982~9!/$10.00
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stance, by Seyleret al. @1#, and a review of its implications
to ionospheric turbulence is discussed by Kintner and Se
@2#.

Equations~1! and ~2! assume that the positions of th
charged particles are well approximated by their guid
centers. For electrons this is valid for most physically r
evant cases, but the assumption might fail for the ions du
their larger Larmor radii. A straightforward, but comput
tionally costly, remedy assumes a full gyrating particle d
scription. A standard fluid model, where the finite Larm
radius~FLR! effects are introduced through the gyro visco
ity, was derived by Braginskii@3#. Recently this analysis ha
been extended by Smolyakovet al. @4#.

A simpler fluid model includes the lowest order FLR e
fects by introducing an operator acting on the electric fi
@5#. By this the averaging of the electric field along the c
cular gyro orbit of an ion with gyro radiusr is approximated,
with the assumption that the characteristic length scale
the electric field variations is much larger thanr. The result-
ing ion gyro center velocity is obtained as

vi5S 11
1

4
r2¹2DE3B0 /B0

2 . ~4!

The effective ionE3B velocity thus differs from that of the
electrons, i.e., the ion mobility differs from the electron m
bility due to FLR effects. The model~4! has been discussed
e.g., by Stasiewicz@6# in the case of large Larmor radiu
effects in the magnetosphere. When polarization drifts
ignored this approximation is formally adequate, but it
incorrectly weighting short scale length fluctuations. Even
their amplitude is by assumption small, this weighting is n
merically unfavorable. An alternative and numerically mo
robust model was suggested by Knorret al. @7#, where a fluid
model is formally retained, but the averaging along the
982 © 1997 The American Physical Society
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55 983FINITE LARMOR RADIUS EFFECTS AND VELOCITY . . .
orbit is carried out accurate to all orders. Also the modific
tion of ion density is included since the ion density diffe
from the guiding center density when FLR corrections
included; a modification of the effective ion drift alone
insufficient and gives an inconsistent model. The result
numerical scheme is easy to implement and is only sligh
more time consuming than the solution of~4!. Analytical
results are available for the model which can serve as n
trivial tests of the code.

The paper is organized as follows. In Sec. II the mo
and its applicability are discussed, both for a two-fluid an
multi-ion fluid model. In Sec. III an outline of the numeric
implementation is given. Analytical expressions for the
ymptotic state of the two-fluid model is compared to resu
from direct numerical simulations in Sec. IV. Next, in Sec.
the dispersion of passive test particles and the correspon
time scales are presented for a systematic variation of the
Larmor radius. Finally, our results are summarized in sec
VI.

II. FLR CORRECTIONS TO ARBITRARY ORDER

A computationally preferable alternative to~4! is to retain
the full expression from the averaging of the electric fie
over the gyro orbit. As previously discussed, the electric fi
experienced by a gyrating charged particle is no longer
same as the electric field evaluated at the guiding cen
Knorr et al. @7# derived an expression for the corrected gu
ing center velocity, indicated by an overbar,

v̄~x!5(
k
J0~kr!vk exp~ ik•x!, ~5!

where the vector componentvk , without the overbar, is ob
tained from theE3B velocity evaluated at the guiding cen
ter. J0 is the Bessel function of order zero. The polarizati
drift is ignored, imposing restrictions on the applicability
the model@7#. The relative magnitude of the polarizatio
drift as compared to theE3B drift is in a first approximation
^v&/vci , where the characteristic frequency^v& is to be
obtained along the particle trajectory. As an estimate
have ^v&;kv th in terms of the thermal velocity and wav
number, giving^v&/vci;kr. The polarization drift may be
ignored for smallkr in strongly magnetized plasmas. Th
latter requirement impliesvpi

2 !vci
2 in the low-frequency

relative dielectric constante'511vpi
2 /vci

2 . Note that the
FLR-corrected flow remains incompressible, just as
E3B flow.

A series expansion ofJ0(kr), assumingkr!1, gives
J0(kr)'12 1

4(kr)2. Retaining only the leading terms, w
obtain the standard@5# correction to the guiding center ve
locity as given by Eq.~4!. From the series expansion we no
that FLR corrections correspond to a reduction in magnit
of the guiding center velocity for a harmonically varyin
electric field. The governing equations remain well behav
for all r, in particular also in the limitr→` since
J0(kr→`)50. It should be emphasized, however, that t
limit is inconsistent with the basic physical assumptions
derlying the expression for the guiding center drift.

The effective, or corrected, guiding center velocity d
cussed in this paper is distinct from the velocity appearing
-

e

g
y

n-

l
a

-
s

ng
on
n

d
e
r.
-

e

e

e

d

s
-

-
n

the usual fluid equations; in that case the velocity is
average of all particle velocity vectors crossing a small r
erence area.

Also the ion density has to be corrected for FLR effec
Describing the dynamics of a magnetized, low-b plasma on
a plane perpendicular to the magnetic field, the perturbati
are assumed to be strictlyB-field aligned. The guiding cen
ters of electrons and ions are then assumed to be unifor
distributed along magnetic field lines, and the phase an
in the gyration to be uniformly distributed in the interv
@0,2p&. The projection of the particle positions on the pla
of analysis is then uniformly distributed on a circle for pa
ticles with given Larmor radius and gyro centers on a giv
magnetic field line. The analysis is similar to that giving t
corrections to theE3B velocity @7# and the result is

n̄~x!5(
k
J0~kr!nk exp~ ik•x!. ~6!

From a prescribed guiding center densityn(x) we now cal-
culate the corresponding charge density by filtering the F
rier coefficients ofn(x) with gk5J0(kr), or alternatively, by
performing the appropriate convolution in configuratio
space.

Physically, the inclusion of FLR corrections consists
the following steps; first the Poisson equation is solved
give the electric field. Then theeffectiveelectric field is de-
termined, corresponding to the appropriate Larmor radius
the given particle species. The particleguiding centersare
moved in response to this effective field, with the density
the appropriate guiding centers following a continuity equ
tion. Then the electric field is again obtained from Poisso
equation, where the local electron and ion densities are
tained for the given guiding center density by distributing t
particles along their appropriate circular orbits as already
scribed.

If the initial distribution of any of the species is uniform
it will remain so also at later times due to the incompre
ibility of the flow. Initial conditions where only the electro
component is perturbed will therefore be unaffected by F
effects and the time variation of the electric field will b
similar to the one described by e.g., Seyleret al. @1#.

In dimensionless units the governing equations, with
FLR corrections incorporated, take the form

]ni
]t

1¹•~ni v̄!50, ~7!

]ne
]t

1¹•~nev!50, ~8!

v52¹F3b, ~9!

¹2F52~ n̄i2ne!, ~10!

where v̄ and n̄ are obtained from Eqs.~5! and ~6!, respec-
tively. Again it should be stressed thatne and ni are the
electron and ion guiding center densities, respectively
typical simulation of the potential evolution is shown
Fig. 1.
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984 55B. KRANE, H. L. PÉCSELI, AND J. TRULSEN
In the derivation of the governing equations~7!–~10!, it
was implicitly assumed that all the ions had the same Larm
radius. This constraint may be relaxed by averaging the
velocity, or equivalently the ion Larmor radius, over a Ma
wellian velocity distribution. Thus the averaged filter coef
cient becomesĝk5exp@2(rk)2/4#. Effectively, this model as-
sumes that the relative distribution of ion Larmor ra
remains the same in a fluid element during its propaga
and deformation. This assumption may be difficult to just
for a collisionless plasma.

Alternatively, we may construct a hybrid model consi
ing of many ion species, each characterized by their res
tive Larmor radiusr. The electrons still obey the continuit
equation ~8!, while each ion species follows a continui
equation

]nr

]t
1¹•~nrv̄r!50. ~11!

In addition, the Poisson equation must be modified to inclu
the charge contributions from each ion species,

¹2F5S ne2(
r

n̄rD . ~12!

First we demonstrate the results from a simulation wh
all the ions are assumed to have the same Larmor rad
Next, we include several ion components, with different L
mor radii, which interact through the collective electric fie
As mentioned, consistency with the derivation of the ba
equations, where polarization drifts were ignored, requ
r to be much smaller than the scales characterizing the fl
tuations and the size of the system. However, in the follo
ing we relax this condition somewhat in order to bring o
the basic features more clearly.

FIG. 1. The time evolution of the potential in a simulation wi
one electron and one ion species, wherer50.5 and the spatia
dimension is@0,10&2 in dimensionless computational units. Th
solid contours indicate a positive potential, while the dashed c
tours correspond to a negative potential.
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III. NUMERICAL CONSIDERATIONS

The system of equations~7!–~10! is solved on a square
grid with spatial dimensions@0,L&2 in dimensionless compu
tational units. In the present simulations we usedN2 grid-
points with N5128. The parametersL and N are chosen
independently. To approximate the spatial derivatives
employed a standard Fourier collocation scheme@8,9#, with
isotropic zero padding to avoid aliasing errors from the no
linear products. Here all wave numbers whereuku>2km/3,
with km52pN/(2L), are zero padded. The Fourier colloc
tion scheme enforces periodic boundary conditions.
though inclusion of a large number of ion species in t
extended system will give a time consuming code, a mod
ate number is acceptable on a parallel machine. Therefore
equations were implemented on an IBM-SP2 with 16 nod
Each fluid is then assigned to a node and communicates
the master node at every time step in order to update
electrostatic potential.

To integrate the system of equations~7!–~10! in time, we
used a fourth order Runge-Kutta method for the first t
time steps. Then, we applied a partially corrected third or
Adams-Bashforth method@10#. Here, the solution of an or
dinary differential equation in the form

]C

]t
5F~C! ~13!

is advanced in time by

C̃n115Cn1
Dt

12
$23Fn216Fn2115Fn22%,

Cn115Cn1
Dt

12
$5F̃n1118Fn2Fn21%,

where F̃n115F(C̃n11). The variablesFn22, Fn21, andFn

are subsequently updated to reflect the new time step.
partially corrected method replacesFn11 with F̃n11. Thus
we are left with only one evaluation of the time consumi
spatial operator, per time step.

The time step is chosen in accordance with the Coura
Friedrich-Levy condition@9#. This requires the time step t
be smaller than the time a perturbation needs to propa
from one gridpoint to another. In the present simulation
characteristic velocity isO(1) while the gridpoint spacing is
O(N21). Hence the time step is chosen to beDt&1/N.

From the simulations of the Eulerian flow, we have acc
to the Eulerian velocity field at each time step. This is su
sequently used to trace the position of a test particle sim
by integration of its Lagrangian velocity
r(t)5* t0

t v„r(t),t… dt. Numerically this is done by a secon

order Runge-Kutta method,

r̃ n115rn1Dt v~rn,nDt !,

rn115rn1
1

2
Dt$v~rn,nDt !1v„ r̃ n11,~n11!Dt…%.

In addition, we must interpolate the Eulerian velocity field
the actual position of the test particle. Thus we have th

-
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55 985FINITE LARMOR RADIUS EFFECTS AND VELOCITY . . .
possible origins of error for tracking the particle. Results
Ramsden and Holloway@11# indicate that the choice of in
terpolation method~and integration method for the position!,
is basically unimportant compared to errors due to the fin
resolution of the two-dimensional~2D! Eulerian dynamics.
Fourier interpolation is discarded because of large comp
tional expenses,O(MN2) whereM is the number of tes
particles. Hence we choose bicubic splines in order to in
polate the velocity. This method has proven to be both ac
rate and fast@12#, implying O(N2) operations for construc
tion of the spline andO(M ) for evaluation. In the
simulations we usedM51225 particles, which initially were
distributed on@0,L&2, with uniform spacing. Test particle
crossing a boundary are reintroduced at the correspon
position at the opposite boundary and the trajectory is c
tinued. The system sizeL is added when calculating the n
particle displacement. The particle tracking thus explici
makes use of the periodicity of the system.

IV. EQUILIBRIUM SPECTRA

With the FLR corrections given by the foregoing arg
ments, Knorr and Pe´cseli @13# worked out an analytical ex
pression for the spectral equilibrium distribution in the ca
of electrons and one ion species. We use these results
test of our program, but as they have not been investiga
numerically before, the results are interesting by themsel

In wave number space the equations~7!–~10! are given
by their truncated Fourier representation

dnik
dt

52 ik• (
p1q5k

kmax

nip v̄q , ~14!

dnek
dt

52 ik• (
p1q5k

kmax

nep vq , ~15!

vk52 iFk k3b, ~16!

Fk5~ n̄ik2nek!/k
2, ~17!

wherevk5gkvk and n̄ik5gknik .
This truncated system possesses three invariants, the

strophy for each species and the total energy. These are
served quantities even for a finite number of wave numb
@13#

Ve,i5(
k0

kmax

une,iku2, ~18!

E5(
k0

kmax

un̄ik2neku2/k2. ~19!

By considering a microcanonical ensemble of systems c
sisting of the Fourier coefficients ofne andni , evolving on
the intersection of the hypersurfaces defined by~18! and
~19!, the equilibrium is given by the Boltzmann-Gibbs di
tribution
y

e
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r-
u-

ng
-

e
s a
ed
s.

en-
on-
rs

n-

P~nek1, . . . ,nekmax,nik1, . . . ,nikmax!

5
1

Z
exp~2meVe2m iV i2bE!, ~20!

whereZ is the partition function

Z5E e~2meVe2m iV i2bE! )
k0

kmax

dnek
r dnek

i dnik
r dnik

i

5)
k0

kmax Fm ime1
b

k2
~m i1gk

2me!G .
The superscriptsr and i denote the real and imaginary part
respectively. The distribution in~20! is characterized by the
inverse ‘‘temperatures’’me , m i , andb corresponding to the
fluctuations in ne , ni , and the total energy. Settin
Z5)kZk and differentiating the logarithm of the partitio
functionZk , with respect to these temperatures, the Fou
components of the spectral energy distribution

^Ek&5
1

b1ck
2k2

, with ck
25

1

me
211gk

2m i
21 ,

and the Fourier components of the electron and ion guid
center density

^uneku2&5me
21S 12

bck
2me

21

b1ck
2k2D ,

^uniku2&5m i
21S 12

bck
2gk

2m i
21

b1ck
2k2 D

are found. Withme51.0,m i50.1, andb52931023, these
expectation values are used as initial conditions for the sim
lations running for 43104 time steps. The equilibrium stat
given by the negative temperatures is only possible fo
finite system wherek052p/L is nonzero@14#. The negative
temperature state corresponds to a condensation of ener
the lowestk modes. However, no singularity arises in th
spectrum, for small negativeb values, because only discre
wave numbers enter the analysis. The spectrum is pos
definite for alluku.0, anduku50 does not enter the dynam
cal evolution.

In the limiting case of zero Larmor radius, wheregk
251,

the spectral energy distribution is characterized byb and an
effective temperatureck

25mem i /(me1m i), independent of
k. It is easily shown that this limit reproduces the results
Seyleret al. @1#, as expected. As mentioned earlier, the ba
governing equations remain well behaved also in the form
limit r→`, which, however, is violating the assumptions
the derivation. We note here that also the equilibrium spe
are well behaved in this formal limit, givinggk

250 and
ck5me . A similar result is also obtained withm i

2150. In
these cases the ion motion is completely decoupled from
dynamics in our equations, while in the zero Larmor rad
case the ion and electron dynamics are indistinguishable

In Fig. 2, the time averaged, numerically obtained spec
distribution is compared with the theoretical result for tw
different ion Larmor radii. For simplicity we represent th
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986 55B. KRANE, H. L. PÉCSELI, AND J. TRULSEN
spectra by continuous curves, even though the analysis
well as the simulations refer to discrete wave numbers.
particular, Fig. 2~a! corresponds to the potential evolution
shown in Fig. 1. The spectra are obtained as a time avera
over the entire simulation. Alternatively, the spectra can b
obtained at a selected time step or as an average ove
reduced time interval, at the expense of an increased unc
tainty, giving rise to some irregularity in the spectral shap
Apart from this statistical scatter, the results in Fig. 2 a
representative for selected wave number spectra during
entire calculation. The dynamics in configuration space a
thus highly dynamic, see Fig. 1, while the power spectrum
essentially stationary, as expected. The stability of the sp
tra was explicitly verified by demonstrating the relaxation o
a perturbed spectrum towards the theoretical distribution
energy in wave number space. In this case, the equilibriu
spectra were perturbed by increasing the energy in a f
central wave numbers by an order of magnitude. Altern
tively, we have observed the relaxation from an initial con
dition where energy was concentrated in a ring in wave num
ber space, but this relaxation took a noticeably longer tim

The agreement between the numerical results and
theoretical prediction is good, indicating that the resul
quoted above represent the correct wave number spectral
tributions. In particular, it can be argued thatVe , V i , and

FIG. 2. Time averaged numerically calculated spectrum~solid
line! compared to the analytical result~dashed line! for ~a! r50.5
and~b! r51.0. The values ofr are given in computational dimen-
sionless units, where the simulated domain is@0,10&2. The abrupt
drop in energy for largek is due to the zero padding scheme em
ployed in the simulations.
as
n

ge
e
a
r-
.

e
e
s
c-

f

w
-

-
.
e
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E are theonly invariants of the truncated system~14!–~17!. If
the analytical results of Knorr and Pe´cseli@13# are accepteda
priori , the results of Figs. 2~a! and 2~b! serve on the othe
hand as a test of the accuracy of the code. The only c
spicuous deviations between the analytical results and
simulations are for the smallest wave numbers in the sys

V. TURBULENT DIFFUSION

The finite Larmor radius effects discussed in the fore
ing section will be particularly important for low-frequenc
electrostatic turbulence in strongly magnetized plasm
Here electrons and ions diffuse at different rates becaus
the difference in theE3B drifts they experience in the sam
turbulent electric field. In order to demonstrate the basic f
tures of this process we used the code discussed in the
going section to analyze the consequences of the FLR
rections for turbulent transport. In order to study well defin
conditions, we assume the equilibrium spectra discusse
Sec. IV.

The most important quantity for describing the diffusio
in the present context is the normalized Lagrangian velo
autocorrelation function

R~s!5
^V~ t !•V~ t1s!&

^V2&
, ~21!

with V(t)5v(r (t),t). For homogeneous and time stationa
turbulence,R(s) contains all relevant information necessa
for obtaining the mean-square particle displacem
^r 2(t)&. Thus it is well known@15# that

^r 2&52^V2&t E
0

t

~12s/t !R~s!ds.

This expression can be approximated for both small
large t,

^r 2&'H ^V2&t2, t!l

2^V2&tt, t@t.
~22!

For large times,t@t, this corresponds to the diffusive limi
where the integral time scale ist[*0

`R(s)ds. For small
times, t!l, we have the convective regime, wherel is the
micro time scale@16# defined asl5A22/R9(0). Therela-
tion between the Lagrangian and the Eulerian velocity au

FIG. 3. The Lagrangian velocity components (x direction! for a
typical electron~solid line! and ion~dashed line! test particle where
r50.5.
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55 987FINITE LARMOR RADIUS EFFECTS AND VELOCITY . . .
correlation functions has been discussed in detail by Pe´cseli
and Trulsen@17#. However, they used a different mode
where the flow consisted of many point vortices convec
by their mutual electrostatic field.

A. Flow with one ion component

With the flow fields being different for electrons and io
@even though they are derived from the same space-
varying electric field, see~5!#, two different correlation func-
tions can be defined; one for electrons and one for the
species specified by the Larmor radiusr. Consequently, each
species has its own associated integral time scale,te and
t i ; and similarly for the micro time scales,le andl i .

As discussed in the foregoing section, the electric fi
power spectrum changes with the ion Larmor radii in t
initial conditions. Given the spectrum of the fluctuations, t
electrons experience the full energy in the electric field wh
the ions experience a field which is reduced by theJ0(kr)
factor in ~5!. This is readily observed in Fig. 3 where thex
component of the Lagrangian velocity is shown for one el
tron and one ion test particle. Both were released at thesame
initial position, but their velocities rapidly become uncorr
lated. Also, it is evident that the ion velocity variation

FIG. 4. Lagrangian velocity autocorrelation functions for ele
trons ~solid line! and ions~dashed line! obtained from simulations
with one ion species in addition to the electrons. The results
shown for three different ion Larmor radii,r50.5, 1.0, and 1.5,
corresponding to~a!, ~b!, and ~c!, respectively. The figure is ob
tained by tracking 1225 test particles for 43104 time steps corre-
sponding to 100 dimensionless computational time units.
d

e

n

d

e

-

smaller and smoother on the average compared to the e
tron velocity. The FLR corrections for the ion dynamics ha
the consequence that an initially close electron-ion gyro c
ter pair will separate faster than in the zero Larmor rad
case. Two initially close electrons will on the other han
remain close for an extended time since they experience
sentially the sameE3B flow, similarly for initially close ion
gyro centers. The problem of relative diffusion@18# will be
discussed in a different work.

A comparison between the electron and ion velocity c
relation functions corresponding to thesameflow clearly in-
dicates an increase in the integral time scalet i for the ions
for increasingr. Results are shown in Fig. 4 forr50.5,
1.0, and 1.5 in computational dimensionless units. F
r50 the velocity statistics for the electrons and ions are
same and the autocorrelation functions are therefore ide
cal. The results are readily understood by the difference
rms velocities for electrons,̂ve

2&5*E(k)dk, and for ions,
^v i

2&5*E(k)J02(kr)dk. The mean-square velocity is large
for the electrons than for the ions sinceJ0

2(kr)<1. The in-
tegral time scale can be estimated by the ratio of a len
scale which is determined byE(k) and a velocity^v2&1/2.
Since ions and electrons move in the same electric field sp
trum, the characteristic length is the same for both spec
while their rms velocities are different for differentr by the
arguments given before. By this heuristic argument we
pect that the integral time scale increases for increasing L
mor radius. Hence the ratiote /t i is estimated as

te
t i

5A^v i
2&

^ve
2&
. ~23!

In Fig. 5 we show this quantity with a full line where
^ve,i

2 & is obtained from the initial equilibrium spectrum. Th
ratios of the actual integral time scales obtained from
simulations are indicated by triangles. Considering the s
plicity of the argument, the agreement is good. The sm
irregularities in the full line are caused by fluctuations in t
simulation spectra.

The result~23! is expressed in terms of the integral tim
scaleste,i for electrons and FLR-corrected ions. These tim

-

e

FIG. 5. The ratiote /t i is shown as a function ofr in dimen-
sionless, computational, units. The solid line shows the analyt
result, while triangles correspond to results obtained from dir
numerical simulations. The analytical results are based on the ac
spectra in the simulations. Since these are statistically fluctuatin
individual realizations, the analytical curve exhibits correspond
irregularities.
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scales are determined by the integral of the entire respec
velocity correlation functions. Alternatively, a micro tim
scalel is determined by the curvature of the respective c
relation function at the origin, i.e.,l5A22/R9(0). Also this
time scale is sensitive to FLR corrections. From Fig. 4
notice that the curvature ofR(s) at s50 decreases with in
creasingr, or equivalently thatl increases with increasin
r. A graph of the ratiole /l i as a function ofr is shown in
Fig. 6. The curvature of the correlation function ats50 was
determined by a parabolic fit. This figure is obtained fro
simulations with one electron and one ion species wherer is
varied systematically.

We can give analytical estimates for the ratiole /l i by
making use of the short time approximation of the Lagra
ian autocorrelation function. For smallt we may approxi-
mate the trajectory of the fluid element by a straight li
r(t)5r01ut with constantu, insert this approximation in
~21!, and average over a Maxwellian velocity distributio
P(u). In addition, we use that the Fourier transform of t
autocorrelation function is given by the power spectrum.
approximation of the Lagrangian autocorrelation function,
terms of the Eulerian spectrum, is then obtained as

R~s!'
1

^u2&(kx (
ky
E~k!expF2

s2^u2&
2

~kx
21ky

2!G . ~24!

This approximation is based on an assumption of a fro
velocity field, in which a fluid element is convected witho
distortion. The approximation can be improved if the velo
ity entering the exponent in the Lagrangian autocorrelat
function is replaced by the rms velocity of the particle a
the velocity of the flow. The argument implies that the flo
field in which a test particle propagates is distorted by m
tion of surrounding vorticity centers which have a velocity
the order of^ve&

1/2. Following, e.g., Wandel and Kofoed
Hansen@19# we then estimate the rms-difference veloc
between a test particle and these vorticity centers
(^ve

2&1^v i
2&)1/2 for an ion andA2^ve

2&1/2 for an electron.
These estimates are then used for^u2& in ~24!, see also Lan-
dahl and Mollo-Christensen@16#. By a Taylor expansion of
R(s) arounds50, the ratio ofle /l i is then estimated as

le

l i
5A^ve

2&1^v i
2&

2^v i
2&

A(kx
(ky

J0
2~rk!E~k!k2

(kx
(ky
E~k!k2

. ~25!

FIG. 6. The variation of the ratiole /l i is shown for increasing
r in dimensionless computational units. The solid line shows
analytical result, while the triangles correspond to results obtai
from direct numerical simulations.
ve
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In Fig. 6 this ratio is compared with the numerically obtain
results. Although there is some discrepancy between
theoretical and the numerically obtained results, the ove
shape of the curve is reproduced by the theory. Obviou
the results agree exactly forr50. The agreement of simpl
estimates such as~23! and ~25! with the numerical results
may seem surprising. It is, however, important that it is
ratios of characteristic quantities that are estimated and
quantities themselves. A common error in the coefficients
the relevant time scales will be canceled in~23! and~25!. For
practical applications it is the ratio of time scales which
most interesting and important, since it contains the inform
tion of the charge separation which depends on the F
effects.

B. Flow with several ion components

As discussed in Sec. II, the system of equations~7!–~10!
is easily extended to include the more realistic case wh
many different ion Larmor radii are simultaneously pres
in the flow. In this way a multifluid model is obtained whe
the relative density of the various ion components can
chosen according to ana priori given velocity distribution,
e.g., a Maxwellian. This multifluid model will be characte
ized by different mobilities of the ion components in additi
to ion-electron differences already discussed. In Fig. 7
show as an illustration the Lagrangian velocity autocorre
tion functions for the case where three ion components w
different Larmor radii are simultaneously present in the sa
flow. Again we observe an increase in the integral time sc
t for increasingr, caused by the filtering of the spectrum b
the J0 function. The results are qualitatively consistent w
those of Fig. 4, where only one ion species was present.
notice that the velocity correlation takes on negative val
for large time separations.

In Fig. 8 we show the root-mean-square particle displa
ment~‘‘absolute diffusion’’! for a simulation identical to the
one described in Fig. 7. As expected, the mean-square
placement is proportional tot in the convective regime an
proportional toAt in the diffusive limit, see~22!. For clarity,
two lines with slopes corresponding tot andAt are included
in the figure. Equally important is the fact that ion spec
with different Larmor radii, but present in the same flo

e
d

FIG. 7. Lagrangian velocity autocorrelation functions for
simulation containing electrons and three ion species with diffe
Larmor radii. The solid line corresponds to the electrons, while~B!,
~C!, and ~D! correspond to ions withr50.5, 1.0, and 1.5 respec
tively. Times are in dimensionless computational units.
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55 989FINITE LARMOR RADIUS EFFECTS AND VELOCITY . . .
have different dispersion rates. From Fig. 8 it is evident t
electrons, which experience the full energy in the elec
field, have a larger mean-square displacement than the
In addition, the ion dispersion rate is seen to increase w
the inverse Larmor radius, as expected. These difference
turbulent diffusion rates give rise to charge separation effe
which are absent in the zero Larmor case.

VI. CONCLUSIONS

In this paper we presented an implementation of a co
putationally advantageous code for including finite Larm
radius effects in a fluid model. The problem was stud
numerically by Knorret al. @7#, but in a formulation where
they averaged over Larmor radii for ions having gyro cent
in a small area of configuration space. Physically, this av
aging, which leads to a particularly simple form of the co
volution, assumes that all the ions in that small area foll
essentially the same orbit. This can be achieved if there
strong collisional interaction between the ions. The simp
ity of the formalism used by Knorret al. @7# was thus ob-
tained at the expense of a somewhat uncertain phys
model, which we avoided in the present study.

In addition to standard accuracy tests, equilibrium spe
obtained from direct numerical simulations of the equatio
~7!–~10! were compared to analytical results. Excelle

FIG. 8. Plot of the rms displacement of the test particles,~A!
corresponds to the electrons while~B!, ~C!, and~D! correspond to
ions with increasing Larmor radius,r50.5, 1.0 and 1.5 respec
tively.
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agreement was found, adding confidence to our code
also to the theoretical analysis. These particular equilibri
spectra have not been studied numerically before. We
plied the code for a study of turbulent transport, demonst
ing that FLR effects have nontrivial effects on the dispers
of charged particles in magnetized plasmas. For turbul
inhomogeneous plasmas this difference in diffusion ra
will have significant influence on the buildup of ambipol
dc-electric fields, and subsequently also on the bulk fl
characteristics. Even though the finite Larmor radius effe
give small corrections to theE3B drift, these corrections
have important consequences by giving rise to charge s
ration effects which are absent for vanishing FLR corre
tions. The analysis in this paper was based on a continu
model in two spatial dimensions. The effects considered h
can, however, also be included in a generalized, disc
Hamiltonian vortex model as discussed in@13#. We have also
studied this model, but the analysis falls outside the scop
this paper.

From the multifluid simulations we obtain results whic
qualitatively agree with expectations based on two-flu
simulations and a systematic variation ofr. The Lagrangian
velocity autocorrelation function experiences the sa
broadening asr increases in both the two-fluid and the mu
tifluid simulations. The basic features of the rms displa
ment are also reproduced in the multifluid simulations.

When a density gradient is present, turbulentE3B diffu-
sion of electrons and ions will necessarily be ambipolar d
to the different diffusion rates of the various ion spec
present, caused by the finite Larmor radius effects. If loca
homogeneous and isotropic conditions can be assumed
results on characteristic time scales can be used to esti
the time for buildup of these ambipolar electric fields.

We have generalized our model and numerical code to
case where the electrons can be assumed to be in a
isothermal Boltzmann equilibrium, while a two-dimension
description is retained for the ions. These results will
presented in a different context.
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